Name:_

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Define a sequence of functions $\{f_n\}$ of real functions by

$$f_n(x) = \frac{\tan^{-1}(nx)}{n}$$

Prove that each f_n is infinity differentiable and $\{f_n\}$ converges uniformly on \mathbb{R} .

2. Consider a sequence of functions $\{f_n\}, f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \frac{x}{1 + nx^2}$$

Prove that $f_n \to 0$ uniformly on \mathbb{R} and $\{f'_n\}$ converges pointwise on \mathbb{R} but not uniformly.

3. Let g be a continuous function on [a, b] and $\{f_n\}$ is a sequence of continuous functions on [a, b] such that $\{f_n\}$ converges uniformly to a function f. Prove that

$$\lim_{n \to \infty} \int_a^b f_n(x)g(x) \ dx = \int_a^b f(x)g(x) \ dx \ .$$

4. Let $\{f_n\}$ is a sequence of continuous functions on [a, b] such that

$$f(x) := \sum_{n=1}^{\infty} f_n(x)$$

converges uniformly on [a, b]. Prove that

$$\int_a^b f(x) \ dx = \sum_{n=1}^\infty \int_a^b f_n(x) \ dx \ .$$

5. Let X be a nonempty set. On C(X) define the following:

$$||f||_{\infty} := \sup_{x \in X} |f(x)| .$$

Prove that $(C(X), \|\cdot\|_{\infty})$ is a normed liner space.

6. Let X be a nonempty set. On $C^1(X)$ define the following:

$$||f||_{\infty,1} = ||f||_{\infty} + ||f'||_{\infty} := \sup_{x \in X} |f(x)| + \sup_{x \in X} |f'(x)|$$
.

Prove that $(C^1(X), \|\cdot\|_{\infty,1})$ is a normed liner space.

7. Define $\langle \cdot, \cdot \rangle$ on C[a, b] by

$$\langle f,g\rangle = \int_a^b f(x)g(x) \ dx \ .$$

Prove that $\langle \cdot, \cdot \rangle$ defines an inner product on C[a, b].

8. Let $M_n(\mathbb{R})$ be the set of all $n \times n$ matrices with real entries. Define the map $\langle \cdot, \cdot \rangle : M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$ by $\langle A, B \rangle = \operatorname{tr}(B^t A)$. Prove that $\langle \cdot, \cdot \rangle$ defines an inner product on $M_n(\mathbb{R})$.

9. Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. Prove that the parallelogram law always holds, that is

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$